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Model selection Large scale

Model selection criteria

Let D = {(xi , yi )}1≤i≤n a training set.

3 different model selection criteria

Negative log evidence (NLE):
− log P(D) = − log

∫
P(D|f )P(f )df .

Negative log predictive leave-one-out (NLP-LOO):∑
− log P((xi , yi )|D \ (xi , yi )).

Mean squared error leave-one-out (MSE-LOO):
∑

(yi − fi (xi ))
2

[fi is the function learned without xi ].
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Connections

Link NLE – NLP-LOO

NLE
∑
− log P((xi , yi )|{(xj , yj)}j>i ).

NLP-LOO
∑
− log P((xi , yi )|{(xj , yj)}j 6=i ).

−→ The NLP-LOO conditions more on the data.
In other words, the prior has more influence in the NLE.

Link NLP-LOO – MSE-LOO

MSE-LOO
∑

(yi − fi (xi ))
2.

NLP-LOO
∑ (yi−fi (xi ))

2

2vi (xi )
+ log(vi (xi )), where vi is the pre-

dictive variance computed without xi .

−→ Predictive variances are ignored in MSE-LOO.

The best criterion is problem and objective dependent.
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Analytical form

No approximation needed:
criteria can be computed in closed form.

NLE log detK + Y>K−1Y

NLP-LOO −
∑

log(K−1)ii +
(K−1Y )2i
(K−1)ii

MSE-LOO
∑ (K−1Y )2i

(K−1)2ii

Claim

The success of Gaussian Processes for regression comes from this
closed form solution.
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Toy experiment

Prior mismatch

Squared exponential covariance function,
K (xi , xj) = a exp

(
−θ||xi − xj ||2

)
+ σ2δij .

Target function = step function with Gaussian noise.

Experimental setup

The three hyperparameters a, σ and θ are learned by
minimizing the NLE.

a and σ fixed. θ minimizing NLP-LOO / MSE-LOO is
optimized in [θNLE/2 . . . 2 θNLE ].

Ratio of the true MSE achieved by these 3 different criteria to
the best MSE (for θ in the same interval).

Experiments repeated 100 times.
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Results

100 points

Noise variance = 10−2.

Hyperparameters

a = 0.7 −→ too small
σ2 = 0.014 −→ OK
θ = 253 (larger is better)

LOO generally less smooth
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Summing up

My conclusions

If you really trust your prior, you should do Bayesian model
selection, i.e. evidence maximization.

If not, cross-validation techniques are a useful safeguard.

Additional remarks

In my opinion, this conclusion applies to Bayesian inference in
general.

Cross-validation errors seem more difficult to optimize (lots of
local minimum). Mixed strategies could be useful.
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Motivations

Time complexity

For n training points, complexity is:

training O(n3) [matrix inversion]

testing O(n) for the mean and O(n2) for the variance

−→ When n is large, approximations are required.

It is important to know whether the main motivation is to improve
the training or testing time.

For instance, if the concern is about training time, a sparse method
for which finding the basis functions is relatively expensive might
not be relevant.

−→ Here the motivation is training time reduction.
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Two important classes of methods

Sparse approximations

A lot of recent work on this topic.

Usually, forward greedy selection of basis functions according
to a given criterion.

With k basis functions, the complexity is O(nk2) for training
and O(k) for the mean prediction (O(k2) for the variance)
−→ same as in a finite model with k variables.

Conjugate gradient

Solve the linear system only approximatively with conjugate
gradient optimization.

Very useful when matrix vector multiplication is fast.

Less work in this direction (cf the Skilling method).

Testing is still O(n) and variance is expensive to compute.
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Sparse methods

Claim

Random selection of basis functions is almost optimal.

Maybe a bit more basis functions are needed but time is saved by
not optimizing their location.

Claim

When k � n, all unknown (hyper)-parameters and basis locations
can be optimized by minimizing the MSE.

This is because we are in an underfitting situation.

So when n is really large, the situation is very simple: we are back
to good old RBF networks. More interesting from a ML point of
view is when n/k is, let’s say, of the order of 10.
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Conjugate gradient

If the matrix has no special structure and k iterations of CG are
performed, training time is O(kn2).

Approximations yielding a special structure (and fast matrix vector
multplication which is the core of a CG iteration):

KD-trees, Fast Multipole, H-matrices low dimension

Low rank matrices (found by incomplete
Cholesky decomposition)

large bandwidth

Sparse matrix from compactly supported
kernel or from thresholding

small bandwidth
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Remarks on model selection

Main focus = tractable approximation of the predictive mean.

Open questions

How does the rest of the Bayesian machinery follow ?
What is the evidence and does it make sense to maximize it ?

Since the data is abundant, one can just keep a fraction of it as a
validation set.
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